5,797 research outputs found

    Renormalization group approach to chiral symmetry breaking in graphene

    Get PDF
    We investigate the development of a gapped phase in the field theory of Dirac fermions in graphene with long-range Coulomb interaction. In the large-N approximation, we show that the chiral symmetry is only broken below a critical number of two-component Dirac fermions Nc=32/π2N_c = 32/\pi^2, that is exactly half the value found in quantum electrodynamics in 2+1 dimensions. Adopting otherwise a ladder approximation, we give evidence of the existence of a critical coupling at which the anomalous dimension of the order parameter of the transition diverges. This result is consistent with the observation that chiral symmetry breaking may be driven by the long-range Coulomb interaction in the Dirac field theory, despite the divergent scaling of the Fermi velocity in the low-energy limit.Comment: 6 pages, 4 figures, extended version with technical detail

    Quantum Effects in Neural Networks

    Full text link
    We develop the statistical mechanics of the Hopfield model in a transverse field to investigate how quantum fluctuations affect the macroscopic behavior of neural networks. When the number of embedded patterns is finite, the Trotter decomposition reduces the problem to that of a random Ising model. It turns out that the effects of quantum fluctuations on macroscopic variables play the same roles as those of thermal fluctuations. For an extensive number of embedded patterns, we apply the replica method to the Trotter-decomposed system. The result is summarized as a ground-state phase diagram drawn in terms of the number of patterns per site, α\alpha, and the strength of the transverse field, Δ\Delta. The phase diagram coincides very accurately with that of the conventional classical Hopfield model if we replace the temperature T in the latter model by Δ\Delta. Quantum fluctuations are thus concluded to be quite similar to thermal fluctuations in determination of the macroscopic behavior of the present model.Comment: 34 pages, LaTeX, 9 PS figures, uses jpsj.st

    Electron-induced rippling in graphene

    Get PDF
    We show that the interaction between flexural phonons, when corrected by the exchange of electron-hole excitations, may place the graphene sheet very close to a quantum critical point characterized by the strong suppression of the bending rigidity of the membrane. Ripples arise then due to spontaneous symmetry breaking, following a mechanism similar to that responsible for the condensation of the Higgs field in relativistic field theories. In the presence of membrane tensions, ripple condensation may be reinforced or suppressed depending on the sign of the tension, following a zero-temperature buckling transition in which the order parameter is given essentially by the square of the gradient of the flexural phonon field.Comment: 4 pages, 3 figure

    Learning by message-passing in networks of discrete synapses

    Get PDF
    We show that a message-passing process allows to store in binary "material" synapses a number of random patterns which almost saturates the information theoretic bounds. We apply the learning algorithm to networks characterized by a wide range of different connection topologies and of size comparable with that of biological systems (e.g. n105106n\simeq10^{5}-10^{6}). The algorithm can be turned into an on-line --fault tolerant-- learning protocol of potential interest in modeling aspects of synaptic plasticity and in building neuromorphic devices.Comment: 4 pages, 3 figures; references updated and minor corrections; accepted in PR

    Two-loop beta functions of the Sine-Gordon model

    Get PDF
    We recalculate the two-loop beta functions in the two-dimensional Sine-Gordon model in a two-parameter expansion around the asymptotically free point. Our results agree with those of Amit et al., J. Phys. A13 (1980) 585.Comment: 6 pages, LaTeX, some correction

    Exact Relations for a Strongly-interacting Fermi Gas from the Operator Product Expansion

    Full text link
    The momentum distribution in a Fermi gas with two spin states and a large scattering length has a tail that falls off like 1/k^4 at large momentum k, as pointed out by Shina Tan. He used novel methods to derive exact relations between the coefficient of the tail in the momentum distribution and various other properties of the system. We present simple derivations of these relations using the operator product expansion for quantum fields. We identify the coefficient as the integral over space of the expectation value of a local operator that measures the density of pairs.Comment: 4 pages, 2 figure

    Multifractality in a broad class of disordered systems

    Full text link
    We study multifractality in a broad class of disordered systems which includes, e.g., the diluted x-y model. Using renormalized field theory we analyze the scaling behavior of cumulant averaged dynamical variables (in case of the x-y model the angles specifying the directions of the spins) at the percolation threshold. Each of the cumulants has its own independent critical exponent, i.e., there are infinitely many critical exponents involved in the problem. Working out the connection to the random resistor network, we determine these multifractal exponents to two-loop order. Depending on the specifics of the Hamiltonian of each individual model, the amplitudes of the higher cumulants can vanish and in this case, effectively, only some of the multifractal exponents are required.Comment: 4 pages, 1 figur

    Exact Relations for a Strongly-interacting Fermi Gas near a Feshbach Resonance

    Full text link
    A set of universal relations between various properties of any few-body or many-body system consisting of fermions with two spin states and a large but finite scattering length have been derived by Shina Tan. We derive generalizations of the Tan relations for a two-channel model for fermions near a Feshbach resonance that includes a molecular state whose detuning energy controls the scattering length. We use quantum field theory methods, including renormalization and the operator product expansion, to derive these relations. They reduce to the Tan relations as the scattering length is made increasingly large.Comment: 25 pages, 8 figure

    Comment on ``Capacity of the Hopfield model''

    Full text link
    In a recent paper ``The capacity of the Hopfield model, J. Feng and B. Tirozzi claim to prove rigorous results on the storage capacity that are in conflict with the predictions of the replica approach. We show that their results are in error and that their approach, even when the worst mistakes are corrected, is not giving any mathematically rigorous results.Comment: 4pp, Plain Te
    corecore